The Water We Drink

Beauregard Waterworks Dist. #3 Public Water Supply ID: LA011008

We are pleased to present to you the Annual Water Quality Report for the year 2016. This report is designed to inform you about the quality of your water and services we deliver to you every day (Este informe contiene informacion muy importante sobre su aqua potable. Traduzcalo o hable con alguien que lo entienda bien). Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water.

Our water source(s) are listed below:

Source Name	Source Water Type
Well #8 – (Hwy 26 #1)	Ground Water
Well #12 – (Hwy 26 #2)	Ground Water
Well #1 – Longville	Ground Water
Well #9 – Hwy 27	Ground Water
Well #4 – (Ball Rd #2)	Ground Water
Well #6 – (Ragley #1)	Ground Water
Well #11 – (Ragley #3)	Ground Water
Well #2 – (Ragley #5)	Ground Water
Well #3 – (Ball Rd #1)	Ground Water
Well #7 – (Ball Rd #3)	Ground Water
Well #10 – (Longacre Rd. #2)	Ground Water

These sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, reservoirs, springs, and wells. As water travels over the surface of land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

<u>Microbial Contaminants</u> – such as viruses and bacteria, this may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

<u>Inorganic Contaminants</u> – such as salts and metals, this can be naturally occurring or result from urban storm water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming.

<u>Pesticides and Herbicides</u> – which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

Organic Chemical Contaminants- including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also, come from gas stations, urban storm water runoff, and septic systems.

Radioactive Contaminants- which can be naturally occurring or be the result of oil and gas production and mining activities.

A Source Water Assessment Plan (SWAP) is now available from our office. This plan is an assessment of a delineated area around our listed sources through which contaminants, if present, could migrate and reach our source water. It also includes an inventory of potential sources of contamination within the delineated area, and a determination of the water supply's susceptibility to contamination by the identified potential sources. According to the Source Water Assessment Plan, our water system had a susceptibility rating of "MEDIUM". If you would like to review the Source Water Assessment Plan, please feel free to contact our office.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water which must provide the same protection for public health. We want our valued customers to be informed about their water utility. If you have any questions about this report, want to attend any scheduled meetings, or simply want to learn more about your drinking water, please contact our office at 337-725-3000.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. WATERWORKS DISTRICT NO.3 OF BEAUREGARD PARISH is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, or may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Water Drinking Hotline or at http://www.epa.gov/safewater/lead.

The Louisiana Department of Health and Hospitals – Office of Public Health routinely monitors for constituents in your drinking water according to Federal and State laws. The tables that follow show the result of our monitoring during the period of January 1st to December 31st, 2016. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk.

In the tables below, you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms, we've provided the following definitions.

Parcs per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in 2 years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter (ug/l) - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Picocuries per liter (pCi/L) – picocuries per liter is a measure of radioactivity in water.

<u>Nephelometric Turbidity Unit (NTU)</u> – nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

Action Level (AL) - the concentration of a contaminant that, if exceeded, triggers treatment of other requirements that a water system must follow.

<u>Maximum contaminant level (MCL)</u> – the "Maximum Allowed" MCL is the highest level of a contaminant that is allowed in drinking water. MCL's are set as close to the MCLG's as feasible using the best available treatment technology.

<u>Maximum contaminant level goal (MCLG)</u> – the "Goal" is the level of a contaminant in drinking water below which there is no known or expected risk to human health. MCLG's allow for a margin of safety.

<u>Maximum residual disinfectant level (MRDL)</u> – The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for the control of microbial contaminants.

<u>Maximum residual disinfectant level goal (MRDLG)</u> – The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLG's do not reflect the benefits of the use of disinfectants to control microbial contaminants.

<u>Level 1 assessment</u> – A study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

<u>Level 2 assessment</u> – A very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

During the period covered by this report we had below noted violations of drinking water regulations.

Compliance Period	Analyte	Туре
No violations in the calendar year of 2016		

Our water system tested a minimum of 20 samples per month monthly sample(s) in accordance with the Total Coliform Rule for microbiological contaminants. During the monitoring period covered by this report, we had the following noted detections for microbiological contaminants:

Microbiological	Result	MCL	MCLG	Typical Source
Coliform (TCR)	In the month of December, 3	MCL: Systems that collect less than 40 Samples per	0	Naturally present in the
	samples returned as positive	month – no more than 1 positive monthly sample		environment

In the tables below, we have shown the regulated contaminants that were detected. Chemical Sampling of our drinking water may not be required on an annual basis; therefore, information provided in this table refers back to the latest year of chemical sampling results.

Regulated Contaminants	Collection Date	Highest Value	Range	Unit	MCL	MCLG	Typical source
Arsenic	2/1/2016	8.6	0.92 – 8.6	ppb	10	0	Erosion of natural deposits; Runoff from orchards; Runoff from glass or electronics production wastes
Barium	1/19/2016	0.032	0.012-0.032	ppm	2	2	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Selenium	1/19/2016	0.92	0.6-0.92	Ppb	50	50	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines
DI (2-Ethylhexyl Phthalate	2/1/2016	3.3	0.77-3.3	ppb	6	0	Discharge from rubber and chemical factories
Diquat	1/19/2016	0.86	0.86	ppb	20	20	Runoff from herbicide use
Fluoride	1/19/2016	0.95	0.33-0.95	ppm	4	4	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
Nitrate-Nitrite	2/1/2016	0.49	0.028-0.49	ppm	10	10	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits

Radionuclides	Collection Date	Highest Value	Range	Unit	MCL	MCLG	Typical Source
Combined Radium (-226 & -228)	2/1/2016	0.69	0.69	pCi/l	5	0	Erosion of natural deposits
Gross Alpha Particle Activity	2/1/2016	4.4	4.02-4.4	pCi/l	15	0	Erosion of natural deposits
Gross alpha, Excl. Radon & U	2/1/2016	4.4	4.02-4.4	pCi/l	15	0	Erosion of natural deposits
Gross beta particle activity	1/19/2016	2.26	2.26	pCi/l	50	0	Decay of natural and man-made deposits. Note: The Gross beta particle activity MCL is 4 millirems/year dose equivalent to the total body or internal organ. 50 pCi/l is used as a screening level

Lead and Copper	Date	90 th Percentile	Range	Unit	AL	Sites over AL	Typical source
Copper, Free	2012-2014	0.2	0.1 – 0.6	ppm	1.3	0	Corrosion of household plumbing systems; Leaching from wood preservatives
Lead	2012-2014	3	1 - 13	ppb	15	0	Corrosion of household plumbing systems; Erosion of natural deposits

Disinfection Byproducts	Sample Point	Period	Highest LRAA	Range	Unit	MCL	MCLG	Typical Source
Total Haloacetic Acids 5	1-2 Ragley on Conley Rd.	2016	0	0-0	ppb	60	0	By-product of drinking water disinfection.
Total Haloacetic Acids 5	Bannister Rd.	2016	0	0-0	ppb	60	0	By-product of drinking water disinfection.
Total Haloacetic Acids 5	Clayton Iles Rd.	2016	0	0-0	ppb	60	0	By-product of drinking water disinfection.
Total Haloacetic Acids 5	Scheutz Rd.	2016	0	0-0	ppb	60	0	By-product of drinking water disinfection.
Total Haloacetic Acids 5	Texas Eastern Rd.	2016	0	0-0	ppb	60	0	By-product of drinking water disinfection.
Total Haloacetic Acids 5	Thomas Smith Rd.	2016	0	0-0	ppb	60	0	By-product of drinking water disinfection.

Acids (HAA5)	Sample Point	Period	Highest LRAA	Range	Unit	MCL	MCLG	Typical Source
TTHM	1-2 Ragley on Conley Rd.	2016	9	5.94-10.09	ppb	80	0	By-product of drinking water chlorination
TTHM	Bannnister Rd.	2016	10	5.38-13.19	ppb	80	0	By-product of drinking water chlorination

ттнм	Clayton Iles Rd.	2016	27	20.01-35.6	Ppb	80	0	By-product of drinking water chlorination
TTHM	Scheutz Rd.	2016	14	9.26-17.74	ppb	80	0	By-product of drinking water chlorination
ттнм	Texas Eastern Rd.	2016	27	21.5-27.8	Ppb	80	0	By-product of drinking water chlorination
TTHM	Thomas Smith Rd.	2016	27	19.1-31.2	Ppb	80	0	By-product of drinking water chlorination

Secondary Contaminants	Collection Date	Highest Value	Range	Unit	SMCL
Chloride	1/19/2016	9.1	4.7-9.1	MG/L	250
Iron	1/19/2016	0.1	0.024-0.1	MG/L	0.3
Manganese	1/19/2016	0.01	0.0026-0.01	MG/L	0.05
PH	1/19/2016	9.3	7.9-9.3	SU	8.5
Sulfate	2/1/2016	9.6	3.1-9.6	MG/L	250

Contaminants	Date	Result	Unit	Range	MRDL or MCL	MRDLG or MCLG	Typical Source
Chlorine	2016	1.26	ppm	.59-1.92	4	4	Water additive used to control microbes

Contaminant	Result Value	Health effects Language
Chlorine MRDL	Highest Running annual arithmetic average computed quarterly, of monthly samples	Some people who use water containing chlorine well in excess of the MRDL could experience irritating effects to their eyes and nose. Some people who drink water containing chlorine well in excess of the MRDL could experience stomach discomfort.

Well#	Location	Sodium Mg/l	Date of Sample
1	Longville	64.4	2012
2	Ragley	100.1	2012
3	Ball Rd.	11.6	2012
4	Ball Rd.	106.7	2009
6	Ragley	100.5	2012
7	Ball Rd.	10.0	2009
8	Hwy 26	118.2	2009
9	Hwy 27	75.6	2009
10	Longacre	98.2	2009
11	Ragley	102.4	2012
12	Hwy 26	113.0	2012

****Environmental Agency Required Health Effects Language****

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and incants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-462-4791).

While your drinking water meets EPA's standard for arsenic, it does contain low levels of arsenic. EPA's standard balances the current understanding arsenic's possible health effects against the cost of removing arsenic from drinking water. EPA continues to research the health effects of low levels of arsenic which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially-harmful, bacteria may be present. Coliforms were found in more sample than allowed and this was a warning of potential problems.

There are no additional required health effects violation notices.

We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.

During the past year we were required to conduct one Level 1 assessment(s). One Level 1 assessment(s) were completed.

Thank you for allowing us to continue providing your family with clean, quality water this year. In order to maintain a safe and dependable water supply we sometimes need to make improvements that will benefit all of our customers.

We at Waterworks District No. 3 of Beauregard Parish work around the clock to provide top quality drinking water to every tap.
We ask that all our customers help protect and conserve our water sources, which are the heart of our community, our way of life, and children's future. Please call our office if you have questions. 337-725-3000